3.106 \(\int \cos ^3(c+d x) (a+a \sec (c+d x))^{3/2} \, dx\)

Optimal. Leaf size=144 \[ \frac{11 a^2 \sin (c+d x)}{8 d \sqrt{a \sec (c+d x)+a}}+\frac{11 a^{3/2} \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{8 d}+\frac{a^2 \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt{a \sec (c+d x)+a}}+\frac{11 a^2 \sin (c+d x) \cos (c+d x)}{12 d \sqrt{a \sec (c+d x)+a}} \]

[Out]

(11*a^(3/2)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(8*d) + (11*a^2*Sin[c + d*x])/(8*d*Sqrt[a
 + a*Sec[c + d*x]]) + (11*a^2*Cos[c + d*x]*Sin[c + d*x])/(12*d*Sqrt[a + a*Sec[c + d*x]]) + (a^2*Cos[c + d*x]^2
*Sin[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.186515, antiderivative size = 144, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {3813, 21, 3805, 3774, 203} \[ \frac{11 a^2 \sin (c+d x)}{8 d \sqrt{a \sec (c+d x)+a}}+\frac{11 a^{3/2} \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{8 d}+\frac{a^2 \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt{a \sec (c+d x)+a}}+\frac{11 a^2 \sin (c+d x) \cos (c+d x)}{12 d \sqrt{a \sec (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^3*(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(11*a^(3/2)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(8*d) + (11*a^2*Sin[c + d*x])/(8*d*Sqrt[a
 + a*Sec[c + d*x]]) + (11*a^2*Cos[c + d*x]*Sin[c + d*x])/(12*d*Sqrt[a + a*Sec[c + d*x]]) + (a^2*Cos[c + d*x]^2
*Sin[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]])

Rule 3813

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(b^2*C
ot[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^n)/(f*n), x] - Dist[a/(d*n), Int[(a + b*Csc[e + f*x]
)^(m - 2)*(d*Csc[e + f*x])^(n + 1)*(b*(m - 2*n - 2) - a*(m + 2*n - 1)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d,
 e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 1] && (LtQ[n, -1] || (EqQ[m, 3/2] && EqQ[n, -2^(-1)])) && IntegerQ[2
*m]

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 3805

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(a*Cot[
e + f*x]*(d*Csc[e + f*x])^n)/(f*n*Sqrt[a + b*Csc[e + f*x]]), x] + Dist[(a*(2*n + 1))/(2*b*d*n), Int[Sqrt[a + b
*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[n, -2
^(-1)] && IntegerQ[2*n]

Rule 3774

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(a + x^2), x], x, (b*C
ot[c + d*x])/Sqrt[a + b*Csc[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \cos ^3(c+d x) (a+a \sec (c+d x))^{3/2} \, dx &=\frac{a^2 \cos ^2(c+d x) \sin (c+d x)}{3 d \sqrt{a+a \sec (c+d x)}}+\frac{1}{3} a \int \frac{\cos ^2(c+d x) \left (\frac{11 a}{2}+\frac{11}{2} a \sec (c+d x)\right )}{\sqrt{a+a \sec (c+d x)}} \, dx\\ &=\frac{a^2 \cos ^2(c+d x) \sin (c+d x)}{3 d \sqrt{a+a \sec (c+d x)}}+\frac{1}{6} (11 a) \int \cos ^2(c+d x) \sqrt{a+a \sec (c+d x)} \, dx\\ &=\frac{11 a^2 \cos (c+d x) \sin (c+d x)}{12 d \sqrt{a+a \sec (c+d x)}}+\frac{a^2 \cos ^2(c+d x) \sin (c+d x)}{3 d \sqrt{a+a \sec (c+d x)}}+\frac{1}{8} (11 a) \int \cos (c+d x) \sqrt{a+a \sec (c+d x)} \, dx\\ &=\frac{11 a^2 \sin (c+d x)}{8 d \sqrt{a+a \sec (c+d x)}}+\frac{11 a^2 \cos (c+d x) \sin (c+d x)}{12 d \sqrt{a+a \sec (c+d x)}}+\frac{a^2 \cos ^2(c+d x) \sin (c+d x)}{3 d \sqrt{a+a \sec (c+d x)}}+\frac{1}{16} (11 a) \int \sqrt{a+a \sec (c+d x)} \, dx\\ &=\frac{11 a^2 \sin (c+d x)}{8 d \sqrt{a+a \sec (c+d x)}}+\frac{11 a^2 \cos (c+d x) \sin (c+d x)}{12 d \sqrt{a+a \sec (c+d x)}}+\frac{a^2 \cos ^2(c+d x) \sin (c+d x)}{3 d \sqrt{a+a \sec (c+d x)}}-\frac{\left (11 a^2\right ) \operatorname{Subst}\left (\int \frac{1}{a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{8 d}\\ &=\frac{11 a^{3/2} \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{8 d}+\frac{11 a^2 \sin (c+d x)}{8 d \sqrt{a+a \sec (c+d x)}}+\frac{11 a^2 \cos (c+d x) \sin (c+d x)}{12 d \sqrt{a+a \sec (c+d x)}}+\frac{a^2 \cos ^2(c+d x) \sin (c+d x)}{3 d \sqrt{a+a \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.517337, size = 120, normalized size = 0.83 \[ \frac{a \cos (c+d x) \sqrt{a (\sec (c+d x)+1)} \left ((35 \sin (c+d x)+11 \sin (2 (c+d x))+2 \sin (3 (c+d x))) \sqrt{1-\sec (c+d x)}+33 \tan (c+d x) \tanh ^{-1}\left (\sqrt{1-\sec (c+d x)}\right )\right )}{24 d (\cos (c+d x)+1) \sqrt{1-\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^3*(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(a*Cos[c + d*x]*Sqrt[a*(1 + Sec[c + d*x])]*(Sqrt[1 - Sec[c + d*x]]*(35*Sin[c + d*x] + 11*Sin[2*(c + d*x)] + 2*
Sin[3*(c + d*x)]) + 33*ArcTanh[Sqrt[1 - Sec[c + d*x]]]*Tan[c + d*x]))/(24*d*(1 + Cos[c + d*x])*Sqrt[1 - Sec[c
+ d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.227, size = 311, normalized size = 2.2 \begin{align*} -{\frac{a}{192\,d\sin \left ( dx+c \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{2}} \left ( 33\, \left ( -2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}} \right ) ^{5/2}\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{2}\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}} \right ) \sin \left ( dx+c \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{2}+66\, \left ( -2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}} \right ) ^{5/2}\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{2}\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}} \right ) \sin \left ( dx+c \right ) \cos \left ( dx+c \right ) +33\,\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{2}\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}} \right ) \left ( -2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}} \right ) ^{5/2}\sin \left ( dx+c \right ) +64\, \left ( \cos \left ( dx+c \right ) \right ) ^{6}+112\, \left ( \cos \left ( dx+c \right ) \right ) ^{5}+88\, \left ( \cos \left ( dx+c \right ) \right ) ^{4}-264\, \left ( \cos \left ( dx+c \right ) \right ) ^{3} \right ) \sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^3*(a+a*sec(d*x+c))^(3/2),x)

[Out]

-1/192/d*a*(33*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(5/2)*2^(1/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))
^(1/2)*sin(d*x+c)/cos(d*x+c))*sin(d*x+c)*cos(d*x+c)^2+66*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(5/2)*2^(1/2)*arctanh(
1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*sin(d*x+c)*cos(d*x+c)+33*2^(1/2)*arcta
nh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(5/2
)*sin(d*x+c)+64*cos(d*x+c)^6+112*cos(d*x+c)^5+88*cos(d*x+c)^4-264*cos(d*x+c)^3)*(a*(cos(d*x+c)+1)/cos(d*x+c))^
(1/2)/sin(d*x+c)/cos(d*x+c)^2

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3*(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]  time = 2.09422, size = 803, normalized size = 5.58 \begin{align*} \left [\frac{33 \,{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt{-a} \log \left (\frac{2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \,{\left (8 \, a \cos \left (d x + c\right )^{3} + 22 \, a \cos \left (d x + c\right )^{2} + 33 \, a \cos \left (d x + c\right )\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{48 \,{\left (d \cos \left (d x + c\right ) + d\right )}}, -\frac{33 \,{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt{a} \arctan \left (\frac{\sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt{a} \sin \left (d x + c\right )}\right ) -{\left (8 \, a \cos \left (d x + c\right )^{3} + 22 \, a \cos \left (d x + c\right )^{2} + 33 \, a \cos \left (d x + c\right )\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{24 \,{\left (d \cos \left (d x + c\right ) + d\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3*(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[1/48*(33*(a*cos(d*x + c) + a)*sqrt(-a)*log((2*a*cos(d*x + c)^2 - 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x
 + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*(8*a*cos(d*x + c)^3 + 22*a*cos(
d*x + c)^2 + 33*a*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c) + d), -1
/24*(33*(a*cos(d*x + c) + a)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(
d*x + c))) - (8*a*cos(d*x + c)^3 + 22*a*cos(d*x + c)^2 + 33*a*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x
+ c))*sin(d*x + c))/(d*cos(d*x + c) + d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**3*(a+a*sec(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 7.36423, size = 702, normalized size = 4.88 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3*(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

-1/48*(33*sqrt(-a)*a*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a*(2*sq
rt(2) + 3)))*sgn(cos(d*x + c)) - 33*sqrt(-a)*a*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x +
1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3)))*sgn(cos(d*x + c)) + 4*sqrt(2)*(33*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt
(-a*tan(1/2*d*x + 1/2*c)^2 + a))^10*sqrt(-a)*a^2*sgn(cos(d*x + c)) - 303*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt
(-a*tan(1/2*d*x + 1/2*c)^2 + a))^8*sqrt(-a)*a^3*sgn(cos(d*x + c)) + 2394*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt
(-a*tan(1/2*d*x + 1/2*c)^2 + a))^6*sqrt(-a)*a^4*sgn(cos(d*x + c)) - 1806*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt
(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4*sqrt(-a)*a^5*sgn(cos(d*x + c)) + 309*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(
-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*sqrt(-a)*a^6*sgn(cos(d*x + c)) - 19*sqrt(-a)*a^7*sgn(cos(d*x + c)))/((sqrt(-
a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*
tan(1/2*d*x + 1/2*c)^2 + a))^2*a + a^2)^3)/d